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0Abstract
While many models have simulated viral infections and their effects, especially

concerning the SARS-CoV-2 pandemicwhich has changed theway of life all around

the world, visualizations of the spread and its effects on the mobility of a popu-

lation are often unintuitive and behind a layer of abstraction. Using real mobility

data from the co-author NET CHECK as well as official freely available infection

data, this work puts forward a simultaneous individual-based simulation and vi-

sualization of the effect of SARS-CoV-2 on the German population. Each particle

decides, based on daily information of the county it is in, which county to travel

to, whether it is infected and if so, how long that is the case. Applying probabil-

ities calculated from the decisions of the particles on the day before brings forth

predictions of travels and infections.

Utilizing the node- and Python-based programming environment of the visual ef-

fects software Houdini, it is possible to create a procedural setupworkflow to show

the processing of this project’s data both in a visual way by displaying particles

representing the population on the map of - in this case - Germany besides evalu-

ating it on a spreadsheet at the same time.

This not only helps to intuitively present the effects of the pandemic and improve

the simulation more efficiently by the ability of visual debugging but also to easily

adjust it if more detailed data, for example more accurate location data, is available

or to up the resolution, i.e. the number of simulated particles, in an instant.
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0Zusammenfassung

Während viele Modelle entwickelt wurden, um Virusinfektionen und ihre Auswir-

kungen zu simulieren - insbesondere während der SARS-CoV-2-Pandemie, die die

Lebensweise auf der ganzen Welt verändert hat - sind Visualisierungen der Aus-

breitung und ihrer Auswirkungen auf die Bewegungsmuster einer Bevölkerung oft

unintuitiv. Mittels realer Mobilitätsdaten des Co-Autors NET CHECK sowie offi-

zieller, frei verfügbaren Infektionsdaten wird in dieser Arbeit eine individuenba-

sierte, gleichzeitige Simulation und Visualisierung der Auswirkungen von SARS-

CoV-2 auf die deutsche Bevölkerung vorgestellt. Jedes Individuum entscheidet auf

der Basis der täglichen Daten über den Landkreis, in welchem es sich befindet, in

welchen Landkreis es reist, ob es sich infiziert und falls ja, wie lange dies der Fall

ist. Nutzt man die Infektions- und Reisewahrscheinlichkeiten, die aus den Ent-

scheidungen der simulierten Personen am Vortag berechnet werden, kann man

Vorhersagen von Reisen und Infektionen durchführen.

Mithilfe der node- und pythonbasierten Programmierumgebung der Visual-Effects-

Software Houdini ist es möglich, einen prozeduralen und automatisierten Work-

flow zu erstellen, der die Verarbeitung der Daten dieses Projekts sowohl visuell

durch die Darstellung von Partikeln, die die Population auf der Karte von - in die-

sem Fall - Deutschland repräsentieren, als auch durch die gleichzeitige Auswertung

auf einem Spreadsheet darstellt.

Dies hilft nicht nur, die Auswirkungen der Pandemie intuitiv darzustellen und

die Simulation durch die Möglichkeit visuellen Debuggings effizienter zu gestal-

ten, sondern auch, sie leicht anzupassen, wenn detailliertere Daten, z. B. genauere

Standortdaten, verfügbar sind, oder die Auflösung, d. h. die Anzahl der simulierten

Partikel, zu erhöhen.

v





0Contents
Abstract iii

Zusammenfassung v

Contents vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 COVID-19 infection data . . . . . . . . . . . . . . . . . . . 3

1.3.2 Population movement data . . . . . . . . . . . . . . . . . 3

1.3.3 Technical keywords . . . . . . . . . . . . . . . . . . . . . 4

1.4 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Method 7
2.1 Data retrieval and pre-processing . . . . . . . . . . . . . . . . . . 7

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Results 15
3.1 Data & Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Infections . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Travels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Discussion 23

5 Conclusions & Outlook 25
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Bibliography 27

Declaration of Authorship 31

viii



1 Introduction

1.1 Motivation

There is no denying that the COVID-19 pandemic has changed the way of life

around the world, especially concerning governmental restrictions and the push

to work from home, both leading to fewer commutes and travels [De 20]. Though

there have beenmany evaluations of this behavioral change, neither an individual-

based visualization of daily travels between counties nor the spread of the SARS-

CoV-2 virus exist for Germany, which would help to present the matter intuitively.

While diagrams and graphs have an advantage in the face of evaluating the topic

scientifically, a simulation and visualization on the individual level are more relat-

able to the viewer and serve the purpose of exposing the pandemic and its effect

in an engaging manner [GMB16; ZK09].

One of the aforementioned effects is government-issued lockdowns resulting in

fewer people moving about, or the stark inverse following the lifting of social re-

strictions timed with the beginning of summer [Tor+21]. Another effect to be

shown are local virus outbreaks, displayed by a substantial increase in the number

of infected simulated people in specific counties. Adding onto this list, a further

behavioral change to be observed is the ratio of local travels compared to extended

trips spanning the size of Germany evolving along the timeline of the pandemic.

As each simulated person is deciding for themselves where they are traveling to,

whether they get infected, and if so, for how long, on any given day, it is possible

to extend the visualization beyond given data and thus simulate and predict move-

ments and infections. This enables, again, an intuitive display of what to expect in

the coming days.

Lastly, this thesis strives to show the versatility of the visual effects software Hou-

dini as a programming environment, shining light on its features to make it more

attractive in a scientific context. Not only is it possible to utilize it in a traditional

way with a Python terminal, but also to set up a network of python scripts and
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Chapter 1 Introduction

have the processed data visible in both a spreadsheet and a 3D viewport. The lat-

ter enables us to do visual debugging, making it easier to see errors, zoom in on

specific details, and generally learn more about what is happening. On the other

hand, the network of scripts permits us to work on particular parts of the program

more easily besides being able to up the resolution of the simulation and plugging

in more detailed data in an instant.

1.2 Related Work

The initial approach of this work was based on detailed cellphone data, i.e. specific

locations of the population at given times, simulating transmission based on close

contact with infected people, akin to the individual-based model for a small sam-

ple size on a simulated population of Daegu, Korea, or the Full-Scale Agent-Based

Model considering Lombardy in Italy [Gia21; ST20]. However, as has been evalu-

ated in a review of agent-basedmodels concerning COVID-19, there are quite a few

shortcomings that prevent them from being used as support for decision-making

processes in the face of governmental restrictions [LJD21].

Unfortunately, none of these seem to consider the educational purposes for the

standard population. While the results of all these approaches show the potential

of agent-based models, they do not present their findings intuitively. If they did,

the general population could better understand the effects of different restrictions

or the pandemic.
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Background Section 1.3

1.3 Background

1.3.1 COVID-19 infection data

This section provides an explanation of the relevant and available data on the

COVID-19 pandemic in general and in Germany, as this version of the model runs

on data relating to the latter.

Robert Koch Institut The primary resource for data on diseases, in our case

SARS-CoV-2, in Germany is the Robert Koch Institut (RKI). The RKI is the Ger-

man national institute for health research within the German Ministry of Health,

responsible for researching diseases and public health risks, and combating infec-

tious diseases [Ins].

Infection Numbers Germany is divided into 16 states, which are further di-

vided into 400 counties. Each district’s public health department forwards its col-

lected case numbers to the RKI. They collect and publish the data daily on a GitHub

repository as a CSV file, detailingwhen the infections were reported, which county

it was reported from, the age group and the gender of the infected [Ins22].

Infectiousness Time The United Kingdom Health Security Agency (UKHSA)

published a paper justifying the reducing of the self-isolation time to 7 days [Age22].

In it, they showed a distribution of howmany people were still infected after a cer-

tain number of days since their infection, resembling a normal distribution around

4 days.

1.3.2 Population movement data

A key feature of the model is that it uses real-world movement data. These para-

graphs explain its origin and definition.
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Chapter 1 Introduction

NET CHECK GmbH NET CHECK GmbH is a consulting company focused on

cellular providers, which conducts the largest annual independent cellular network

test spanning all of Germany [Wol]. They gather the data needed by partnering

with mobile app developers to incorporate NET CHECK’s API collecting cellular

reception strength, location data and more [Gmb].

Travel Data Each location ping from NET CHECK’s data can be assigned to a

county. Further, a travel is defined as a device being in one county on one day, and

in another on the following day.

1.3.3 Technical keywords

GeoJSON A GeoJSON file encodes polygon objects and other geographic data

structures, their properties, and their spatial extents using a geographic coordinate

reference system [But+16].

Houdini SideFX’s Houdini is a 3D animation software application most com-

monly used for the creation of visual effects in film and games. In it, every action

is stored in a node. These nodes are then “wired” into networks, which define a

“recipe” that can be tweaked to refine the outcome. The ability for nodes to be

saved and to pass information, in the form of attributes, down the chain is what

gives Houdini its procedural nature. [Sofa]

LRU Cache Caching improves performance by keeping recent or often-used

data items in memory, saving time when repeatedly accessing the same data. An

LRU (least recently used) cache discards the least recently used items first. Pythons

functools package makes it easy to implement such a cache [Pyt].
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Proposition Section 1.4

1.4 Proposition

This work proposes a simultaneous visualization and simulation model based on

individuals. It aims to set up an easily modifiable framework that strives to present

the spread of the pandemic intuitively, and the effect governmental restrictions

and the virus itself might have on the population’s behavior, visible in differing

traveling patterns and stark differences in the number of infections.

1.4.1 Concept

The approach we are looking for is highly modular, such that the data used to drive

the simulation calculations can easily be swapped out. This is useful if we want to

run the model for other countries or plug in more detailed data, e.g., county travel

information taking more people into account.

Given that we are looking to develop a model acting on the individual level, each

personmust act as an individual, i.e., other individuals’ decisions do not actively af-

fect them. However, if many individuals choose to be infected in a specific county,

the chance of another individual being infected increases. We consider the popu-

lation of Germany to drive the model as an example.

The probability of an individual becoming infected is defined by the incidence

data of the county it currently resides in. The daily travel data between counties

determine the probability of traveling to another county.

A basic setup for the proposed approach can be seen in figure 1.1, showing the

workflow of the model.

Lastly, we need to define a way to represent an individual in the software we are

using. Houdini works best on points defined in 3D space, so we will use a simple

1:1 relationship between individuals and geometry points in Houdini with all the

attributes needed for the simulation and visualization to work.
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Chapter 1 Introduction

Figure 1.1: Conceptual process of the model. Data sources are marked in dashed boxes

and algorithms are written in solid boxes. Arrows show the flow of the program. The big

frame titledDaily Simulation is the process repeated for each day of the pandemic, the gray

frame inside of it marks the two algorithms which are only enabled when the prediction

part of the model is active.
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2 Method

2.1 Data retrieval and pre-processing

In the previous chapter we mentioned the modularity of our approach, such that

the data listed here is rather exemplary. Even so, there are still three fundamental

types of data that are needed, which are as follows.:

• Daily incidence data: We used freely available COVID-19 incidence data on

a county level from the Robert Koch Institut, the official German health in-

stitution [Ins22].

• Daily travel data: From the data NET CHECK provided, we as a team calcu-

lated a 3-dimensional travel matrix in which, for each day and each county

in Germany, it lists how many people traveled to each other county.

• A GeoJSON file listing the counties as polygons with an attribute to map

the polygons to the counties: We used such a GeoJSON file for Germany

available from the ESRI COVID-19 dashboard, which also divides Berlin into

districts, to get a more accurate simulation and visualization [ESR22].

We worked with a 7-day rolling average applied to the daily incidence data to

iron out differences created by reporting dates and inaccuracies. This mitigates

the peaks on reporting dates and lows on weekends. As NET CHECK’s travel

data works in absolute numbers as well, we estimated that only 5% of the German

population is represented by comparing the number of devices tracked with the

population number. The given numbers were multiplied by 20 to remedy this. In

general, we always worked with percentages relative to the county’s population

to scale the simulation’s resolution more efficiently, which we calculated by using

freely available census data listing the population number for each German county

[Bun].

The simulation was slowed down by repeatedly searching for the matching county
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Chapter 2 Method

data for each simulated person. By splitting up the incidence data into a new file

for each day, instead of having one vast file, as well as further dividing the travel

data into not only each day but also each county, accessing times could be reduced.

section 3.3 reports these optimizations in detail.

2.2 Implementation

To create a simulation and a visualization, we need a population on which to run

them. For this, we have modified vvzen’s Houdini GeoJSON Tools Python package

such that it not only imports GeoJSONpolygons but also reads in attributes of poly-

gons [vvz21]. Each county is represented by a polygon group, whose members are

the imported polygon shapes representing it in 3D space. This now enables us to

read in a spreadsheet listing each county’s population and use a standard Houdini

scatter node to distribute points accordingly on the surfaces of the polygons.

Once distributed, we need to define the attributes each simulated individual re-

quires. Since we are looking to store infection data, we need an infected attribute,

coupled with an infection time attribute, to know how long this individual will be

infected. The following important part is the traveling; to store the information

needed, we create a current county attribute as well as a next county attribute. The

former is essential to calculate the latter, but also to calculate the infection based

on the incidence data of the county it is currently in. On top of that, we will also

save the point number of the point to use as part of the seed for the randomness

calculation in both the infection and traveling portion.

Now we can start the daily loop of simulating and visualizing the infections and

travels. We separated the infection and the traveling portion for each day into

different python scripts run one after the other to be able to isolate them and work

on them separately. First, we will take a look at the infection calculation. Based

on the incidence data we have of the specified day, each simulated point has the

following chance of being infected, being in a specified county:

infection chance =
number of infections in the county

population of the county

∗ infection multiplier

where the infection multiplier is an arbitrary value we can easily change with a

slider to show a more drastic infection effect, by default it is set to 1.0.
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Implementation Section 2.2

Once an individual is marked as infected, we need to define the number of days

that individual will stay infected. To achieve this, the following probabilities have

been implemented, based on an estimate of the research the UK Health Security
Agency conducted concerning the isolation period and the number of people still

being infectious [Age22]:

infected days 1 2 3 4 5 6 7 8 9

probability 5% 5% 15% 20% 25% 10% 5% 5% 5%

The next step in our model is to calculate the traveling of individuals. Assume

the individual we are looking at is situated in county 𝑋 . Based on the travel data

we are given on the specified day for county 𝑋 , we will look at how many people

traveled to each other county and calculate our probability of traveling to county

𝑁 in the following way:

Suppose the probability of an individual traveling from county 𝑋 to county 𝑁 on

the given day is

probability𝑋𝑁 =
number of people traveling from 𝑋 to 𝑁

population of county 𝑋

and, as an example, we will use the following relative distribution of travelers from

county 𝑋 :

traveling to county A B C D

probability 50% 20% 10% 20%

then we can take a random sample from an even distribution between 0.0 and

1.0 and get the county this individual is traveling to by partitioning the range

according to the relative portions of travelers:

0.0 0.5A 0.7B 0.8C 1.0D

sample

In the sample taken above, the individual would travel to county 𝐶 .

9
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Once the individual has decided which county to travel to, we need to find a po-

sition in that county the point representing the individual can travel to. We could

use the standard Houdini scatter node to achieve this, and while accurate, it is

incredibly slow. We have written a custom scattering alternative which tends to

be inaccurate when working with oddly-shaped polygons, e.g., when the centroid

isn’t located inside the polygon. Still, this method of distributing points is 95%

faster than the standard scatter node. The way it works is as follows:

From the polygon group representing the county, we choose a random polygon.

Then we sample a random point 𝑎 from the outer edge of the chosen polygon and,

lastly, a random position on the line from 𝑎 to the polygon’s centroid. This could

further be improved by checking if the position gathered by this method is actually

on the polygon; this would, however, slow the process down again, which is why

we decided against it, especially considering that this happens only in relatively

rare cases.

To further speed up the calculation steps, we implemented a LRU cache when ac-

cessing the input data so that the duplicate files do not need to be read repeatedly

for every individual in the same county.

We would not be able to see individuals moving to other counties if each day was

just one frame, which is why each day is represented as one second on the timeline

of the visualization. To show movements, if the individual traveled, we use LERP
- linear interpolation of vectors - between the position in the old county and the

new position in the county the point is traveling to.

As previously stated, there is also the possibility of using the model in a predictive

way. By using the methods discussed beforehand, because of the nature of ran-

domness, it is likely that the result of infection and traveling is not the same as in

the data that is fed in. Suppose we save and write out these choices that each indi-

vidual made on that day. In that case, we can use them as inputs for the next round

of calculation, thus engaging in a prediction akin to the naive forecast. Though, as

movement patterns differ from weekdays to weekends, we save the choices based

on the day of the week to still be able to differentiate between these patterns.

We have always used relative numbers when calculating infections or travels. Not

working with absolute numbers enables us to easily adjust the number of simu-

lated individuals, with just one change of a slider of distributed points at the very

beginning, while retaining the correct factor of infections and people traveling to

10



Implementation Section 2.2

other counties. This is especially useful when the need to reduce calculation time

arises to see changes made in the scripts quickly.

An overview of the Houdini network of the scripts described above is pictured for

the initial setup of the simulated population as well as the daily calculation in the

two figures 2.1 and 2.2 respectively.

11



Chapter 2 Method

Figure 2.1: Houdini network of the initial creation of the map and the population distri-

bution. The program works its way downward from the top through each of the nodes,

modifying the data in each step.
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Implementation Section 2.2

Figure 2.2: Houdini network of the daily calculation repeated for each day of the pan-

demic. Again, the program works its way downward from the top through each of the

nodes, modifying the data in each step.
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3 Results

3.1 Data & Prediction

3.1.1 Infections

After taking a detailed look at how the model works, it is time to evaluate it. We

will start by comparing the ground truth data fed into the model with the summed-

up choices every individual made concerning infections and use January to Febru-

ary 2022 as a timeline. As stated in the previous section on data, we applied a

7-day rolling average to iron out inaccuracies stemming from the days infections

are reported. To follow the plot visually, we have decided to average the incidence

numbers of all counties in both the input data and the simulated choices in figure

3.1.

Of course, when zooming into specific counties, we can observe an increased rate

of difference from the actual data due to fewer individuals being able to average

the choices out overall. Still, it follows the same trend. This can be seen when we

look at Munich as an exemplary county in figure 3.2.

We can see that the model stays close to the ground truth, even when only simu-

lating every hundredth individual in Germany (820.000 points).

In figure 3.3, we will be doing the same as in figure 3.1, except that we will be

switching to the predictive model on the 32nd day, the 1st of February 2022. As

expected, the simulated data stays close to the real data for a few days before

differing. Hence, this prediction, akin to the naive forecast, is rather suited for

predictions in the near future; further predictions and suggestions to improve this

model will be discussed in the upcoming Outlook chapter 5.2.
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Chapter 3 Results

Figure 3.1: Comparison of real and simulated infection data (infections divided by popu-

lation) in Germany, January and February 2022

Figure 3.2: Comparison of real and simulated infection data (infections divided by popu-

lation) in Munich, January and February 2022
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Data & Prediction Section 3.2

Figure 3.3: Comparison of real and predicted infection data (infections divided by popu-

lation) in Germany, January and February 2022. Prediction starting on day 32

3.1.2 Travels

The next step is to inspect how the model behaves concerning travel. To evaluate

them, we will assess close and far travels by calculating the mean relative travels

between Munich and the adjacent county Ebersberg as examples for close travels.

We calculate the sum of relative travels betweenMunich, Stuttgart, Frankfurt a.M.,

Berlin (Center), Cologne, and Hamburg as examples of far travel. As can be seen

in figure 3.4, we can discern the waves stemming from weekday travels compared

to weekend movements, though this pattern is harder to see in the curves repre-

senting farther travels. Again, the simulated choices stay relatively close to the

ground truth data for both close and far travels.

Figure 3.5 compares the ground truth travel data to the predictive simulation. Sim-

ilar to the predicted infection data, the prediction differs more than if the actual

data drove it. However, because the curve presents a strong weekly wave pattern

which we incorporate by implementing a prediction with respect to the simulated

weekday, the predicted data stays considerably closer to the visible trend.

17
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Figure 3.4: Comparison of real and simulated travel data (travels divided by population)

for close and far travels, January and February 2022

Figure 3.5: Comparison of real and predicted travel data (travels divided by population)

for close and far travels, January and February 2022
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Visualisation Section 3.2

3.2 Visualisation

Arguably the most crucial part of this work is its intuitive visualization of infec-

tions and travels. Figure 3.6 communicates clearly where infected individuals re-

side by coloring them red and enlarging them. What has to be kept in mind is the

resolution of the simulation, which in this case is 100 real people per simulated

particle. As a sample, we have chosen the 10th of January 2022.

The chosen resolution affects the size of the shown particles inversely, as being

able to see more points leads to more clutter in clusters - areas with a high popu-

lation density such as North Rhine-Westphalia and Berlin. Suppose the size of the

particles did not decrease with an increase in the number of simulated individu-

als. In that case, we could no longer discern single particles in these mentioned

clusters.

Zooming into Czechia enables us to discern movement, even in a static image. In-

dividuals’ positions are interpolated linearly, which means a traveler from Bavaria

to Berlin will move through what would be Czechia; that makes it easy for us to

see them against a blank background, as seen in figure 3.7. On top of that, the mo-

tion blur applied to the moving particles creates a small "trail" of the movement,

which helps to perceive the existing movement even though the image shown in

this thesis is still.

For interested readers, a video of the simulation and visualization displaying Jan-

uary and February 2022 can be accessed on this project’s GitLab repository [Ste].

19



Chapter 3 Results

Figure 3.6: Visualization of infections and travels in Germany (January 12th, 2022). Each

point represents a simulated individual, which in this case is each 100th person in Ger-

many. Infected individuals are shown in red.
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Figure 3.7: Visualization of infections and travels in Germany (January 12th, 2022;

closeup). Again, each point represents a simulated individual, which in this case is each

100th person in Germany. Infected individuals are shown in red, moving particles due to

them traveling to other counties can be discerned by their trail.
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3.3 Optimizations

In chapter 2, we mentioned various runtime optimizations concerning data pre-

processing as well as using caches for specific functions to facilitate data retrieval.

The simulation was slowed down by repeatedly searching for the matching county

data for each simulated person. By splitting up the incidence data into a new file

for each day, instead of having one vast file accessing times could be reduced by

30%, equivalating to 20 minutes of runtime per simulated day. Similarly, by further

dividing the travel data into not only each day but also each county, accessing times

in the simulation were reduced by 90%: a reduction of 30 minutes of runtime per

simulated day on our machine.

A further improvement has been made using LRU caches for both functions read-

ing in data - infections and travels - as accessing the data from scratch for every

individual in a county on a specific day is unnecessary. We kept the number of

entries in the cache high enough to store each county’s data for a given day as

RAM size was not an issue on our machine. These caches have led to a reduced

runtime of 1 minute per simulated day, equivalent to a reduction of 50% at that

point of optimization.

Overall, with these optimizations we could reduce the runtime from 10 minutes

per simulated day for 80.000 individuals to 1 minute of calculation per simulated

day for 800.000 individuals.
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4 Discussion

Though Houdini is, maybe unexpectedly as it is a VFX software, a great tool in

a scientific context enabling new ways to create innovative methods, simulations

and visualizations, there were also a few limitations we encountered while work-

ing with it.

First, conforming to the frameworkHoudini gives you is necessary. Whenworking

with polygons, for example, we need to use the polygon objects given by Houdini’s

Python package, as there is no easyway to convert from otherways of representing

them. The way Houdini represents objects in its Python environment also needs

some getting used to, though the online documentation is very in-depth and could

resolute questions quickly [Sofb].

A significant advantage highlighted in the chapters beforehand is the interactive,

instant visual feedback one can receive inside Houdini’s viewport. What you win

in that regard, you lose in interactivity. While it is possible to cancel calculations

between different nodes and Houdini-given custom nodes, it is impossible to in-

terrupt the process if we run into a problem like an infinite loop inside a python

node. In that case, the whole of Houdini needs to be restarted.

On top of the issue mentioned in the paragraph above, there is another downside

of using Houdini as a programming environment: it is a rather expensive program.

Even with remote access to a computation cluster, we are not able to simply trans-

fer the files and run them there. It would need an extensive installation process

coupled with a costly subscription to be able to use it. Once it is installed, though,

due to the modular setup for this project, it is possible to run the model on that

computer without the need to edit anything.

Our model is based on permanent travels, such that when an individual travels

to another county, they become part of its population and diffuse into it. This

might falsify the simulation, as on this scale, wewould rather see commuters travel

between counties and return home at the end of their workday. To include these

daily commutes, the model could be adapted to simulate not only each day but
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Chapter 4 Discussion

two points in time per day so that commuters would return home on the same

day. However, to adapt the model to this fact, we would also need more detailed

travel data.

Assuredly, the topic of computational power is one often brought up in this kind of

chapter, and alas, it resurfaces here as well. Python’s lack of proper multiprocess-

ing implementation means that we are limited by the core speed of the processor

running the program. A newer, faster processor (and, in general, newer computa-

tional hardware) would have enabled me to run the model in a higher resolution;

a 1:1 representation of simulated individual to real individual in Germany is an

exciting approach for which we lacked the time or power needed.
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5 Conclusions & Outlook

5.1 Conclusion

We have created a working, easily modifiable model inside of Houdini, with which

we can intuitively watch the infection itself spread as well as discern movement

patterns of the population. The model is correctly driven by real-world data fed

into it, which can be changed instantly. Furthermore, Houdini has proven itself

as a competent, feature-rich, and innovative programming environment, albeit its

usual use cases of being a pure VFX software may differ from the context used in

this thesis. Still, the downsides of the price and being confined to a single program,

in general, should be kept in mind.

Both the project file and a rendered video displaying a simulation and visualization

of January and February 2022 can be accessed on this project’s GitLab repository

[Ste].

5.2 Outlook

With an organized network of scripts in place which drive our model, there are a

few directions in which to expand. For instance, putting a stronger emphasis on

the prediction by including more data sources like census data and developing the

individual-basedmodel to include age ranges for the individuals to act accordingly.

For example, children go to school on weekdays, where they have a much higher

chance of infection.

The initial idea of this project was to use actual location data of people living in

Germany to drive a contact-based infection simulation. This method would have

enabled us to transfer the infection states across individuals based on a contact

radius - for example, a few meters - and evaluate an intuitive correlation between
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infection transmission and contacts. Unfortunately, access to that kind of data

was denied at short notice. If that data were made available again, it would help

to create a convincing model with a better way to simulate and predict infections.

Ultimately, with census data as well as map data fromOpenStreetMap, whichmarks

residential areas, schools, offices, and other buildings [Ope], it would be possible to

create an evenmore accurate simulation for the population of Germany. Simulated

individuals could go to places with higher infection rates like schools and work,

back to their home location to possibly infect the people living in proximity, which

then again go to their offices. Hence, we could intuitively follow a chain reaction

of infection. As one might guess from this explanation already, this would require

a lot of time and effort to set up in exchange for such a detailed model, though we

suppose the results will very well be worth it.
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