Disco AI

↝      Description

Exploring and experimenting with OpenAI unconditional diffusion models, mainly using Disco Diffusion. Thank you to the DElab of the Hasso Plattner Institute for letting me use the power of a few A100 GPUs.
It was incredibly interesting to learn more and more of how the AI interprets the input, both the prompt as well as all the other parameters, and getting better at formulating of what I want the AI to do. In the midst of exploring, I followed the development of StabilityAI's Stable Diffusion, which blew these models out of the water in terms of coherency and speed. Feel free to see my experiments with Stable Diffusion here →

You may notice the number of iterations for each image; to get the results I had in mind, I had to fiddle around a lot with the parameters of the generation as well as the prompt formulation. Nth iteration means that this was the nth image generated from the same conceptual idea. If you are interested in the nitty gritty details, an example prompt can be found at the bottom of this page.

↝      Tools used

Disco Diffusion, Python, Photoshop

flamingo • 39th iteration
tucan • 21st iteration
robo battle of colors • 211th iteration
temple of petra • 182nd iteration
nepal • 218th iteration
royal portrait • 14th iteration
bratty portrait • 9th iteration
samurai portrait • 3rd iteration

sunflower portrait • 8th iteration
overgrown battlefield • 137th iteration
vision of ecstasy • 6th iteration

alien plant still life • 46th iteration

pastel rock waterfall • 11th iteration
holographic ocean cliff • 34th iteration
robotvs                                     robotvs                                      ╭─────────────────────────┬────────────────────────────────────────────────────╮                ArgumentValue                                              ├─────────────────────────┼────────────────────────────────────────────────────┤              batch_nameNone              batch_size1              clamp_gradTrue clamp_max*0.08           clip_denoisedFalse clip_guidance_scale*16000 clip_models*['ViT-B-32::openai''ViT-B-16::openai',           'ViT-L-14-336::openai''RN101::openai',           'RN50x4::openai']   clip_models_schedulesNone cut_ic_pow*5.0            cut_icgray_p[0.2]*400+[0]*600 cut_innercut*[2]*200+[4]*200+[12]*200+[18]*200+[20]*200 cut_overview*[18]*200+[16]*200+[8]*200+[2]*200+[0]*200     cut_schedules_groupNone            cutn_batches4         diffusion_model512x512_diffusion_uncond_finetune_008100            diffusion_model_configNone diffusion_sampling_modeddim                                               display_rate*80 eta*-0.8            fuzzy_promptFalse              init_imageNone              init_scale1000 n_batches*5 name_docarray*robotvs                                                on_misspelled_tokenignore                                             perlin_init*True             perlin_modemixed                                                             rand_mag0.05         randomize_classTrue range_scale*20000 sat_scale*75000 seed*3674016269               skip_augsFalse skip_steps*20 steps*500 text_prompts*['Big robot mechs fight against each other in a  white desert with colorful powder explosions in  the environment, by Emmanuel Shiu and Raphael  Lacoste:10''colorful, epic, atmospheric, action, Titanfall mech, Real Steel Mech, Transformers,  Pacific Rim titans, ultra detailed, trending on  artstation, 4k resolution:8''blurry:-2']  transformation_percent[0.09] tv_scale*1000 use_horizontal_symmetryFalse     use_secondary_modelTrue   use_vertical_symmetryFalse width_height*[1024576] ╰─────────────────────────┴────────────────────────────────────────────────────╯                  showing all args (bold * args are non-default)                 
Example prompt with parameters

←      Go Back